BIG DATA AND ANALYTICS

Daniel Gillblad, dgi@sics.se Swedish Institute of Computer Science

OUR RESEARCH: SURVIVING THE DATA FLOOD

SOME QUESTIONS AROUND BIG DATA ANALYTICS

1. What is Big Data?

2. What is different this time?

3. Why is it important?

4. What does the future look like?

BIG DATA – 3V, AND MORE?

BIG DATA IS PARALLELIZATION

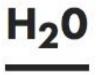
Read on 10 000 machines: 10 000 times faster

BIG DATA IS SCALABILITY

ON COMMODITY HARDWARE

LOTS OF COMMODITY HARDWARE...
...BIG DATA IS FAULT TOLERANCE

BIG DATA IS PLATFORMS AND MIDDLEWARE



FIRST, THERE WAS MAP REDUCE

- Distribute data over commodity hardware (HDFS) etc.) in data center
- Map and distribute computation to computers storing the data
- Choose fix, batch-oriented form of calculation: Map -> Reduce

MAP REDUCE, EXAMPLE

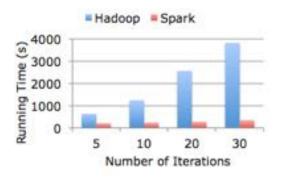
Word count: "read -> map -> reduce -> write"

```
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
     private final static IntWritable one = new IntWritable(1);
     private Text word = new Text();
     public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
       String line = value.toString();
       StringTokenizer tokenizer = new StringTokenizer(line);
       while (tokenizer.hasMoreTokens()) {
        word.set(tokenizer.nextToken());
        output.collect(word, one);
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
     public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter)
     throws IOException {
       int sum = 0;
       while (values.hasNext()) {
        sum += values.next().get():
       output.collect(key, new IntWritable(sum));
```


NEXT-GEN MAP REDUCE

- Handle real-time, interactive and iterative tasks: Necessary for machine learning etc.
- Resilient distributed data sets inmemory caching etc.
- 1. Transformations: Map, filter, join...
- 2. Actions: Count, collect, save...
- Faster, easier, more powerful


```
file = spark.textFile("hdfs://...")
file.flatMap(line => line.split(" "))
    .map(word => (word, 1))
    .reduceByKey(_ + _)
```



SPARK, REAL-WORLD EXAMPLE

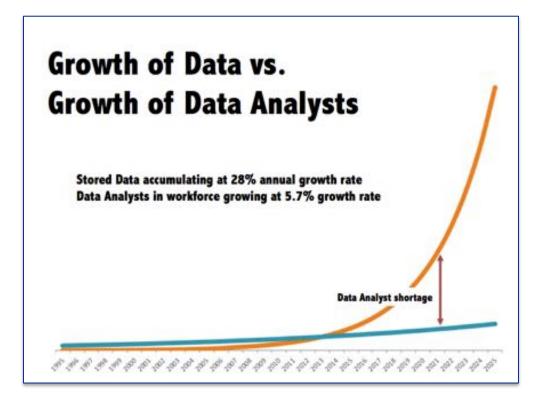
Incomprehensible example:

Defines both what/how and hints on how to parallelize

IS THAT IT?

- Still not that easy to write special kind of developers
- Fantastic productivity in the right hands
- Developer support limited
- Parallelization is difficult
- Pretty difficult to write advanced analytics

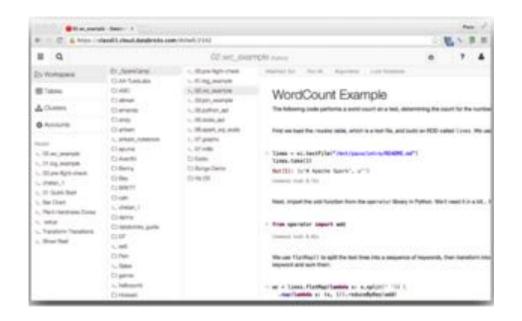
WHO USES THIS?



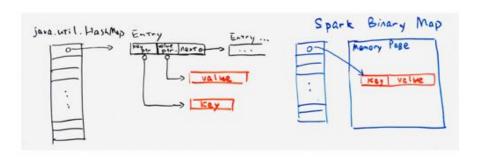
SCALABILITY IS OFTEN NO LONGER THE MAIN ISSUE – ANALYTICS, EFFICIENCY AND PRODUCTIVITY ARE

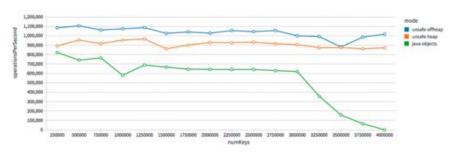
ACCESSIBLE BIG DATA TOOLS?

- Higher-level abstractions (RDDs -> Dataframes etc.)
- R and Python interfaces
- Libraries:
 - Spark MLib, GraphX
 - FlinkML, Gelly
 - •
- Higher level languages
- Imperative Big Data processing
- ...



RAW PERFORMANCE MATTERS

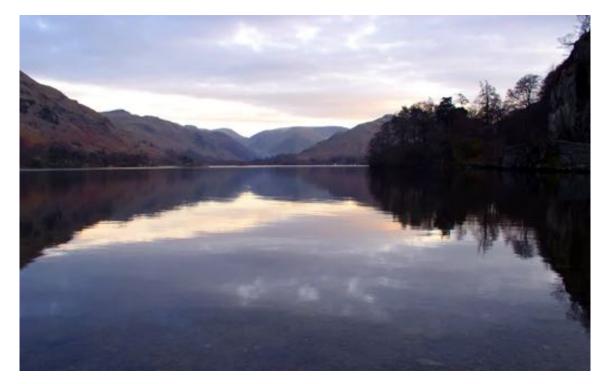




https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

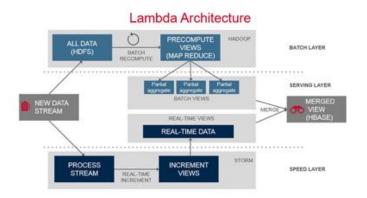
http://bid2.berkeley.edu/bid-data-project/

DATA AT REST...



... TO DATA IN MOTION

FROM LAMBDA ARCHITECTURE...



https://www.mapr.com/sites/default/files/otherpageimages/lambda-architecture-2-800.jpg

...TO UNIFIED ARCHITECTURE

WHAT IS DIFFERENT THIS TIME?

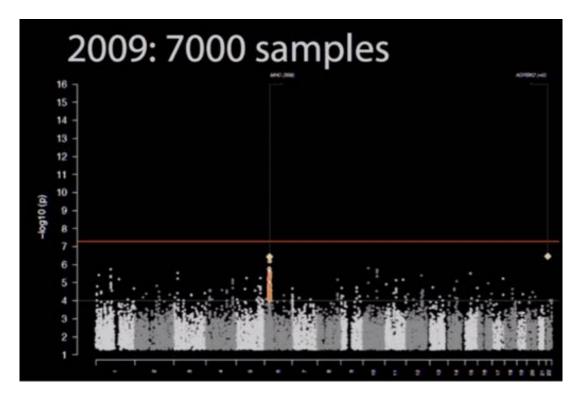
- Haven't we seen this before? AI, Data Mining etc.?
- Things are a bit different this time around:
 - 1. We have the computational power and middleware (cloud, Big Data middleware)
 - 2. We have the data (Human generated, IoT)
 - 3. We have the algorithms

THE UNREASONABLE EFFECTIVENESS OF DATA

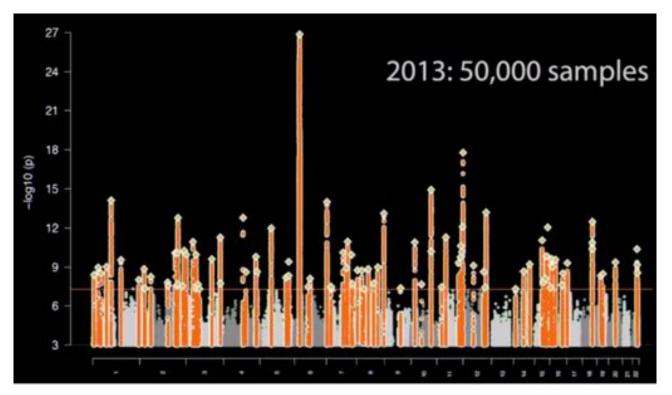
 In a wide array of academic fields, the ability to effectively process data is superseding other more classical modes of research.

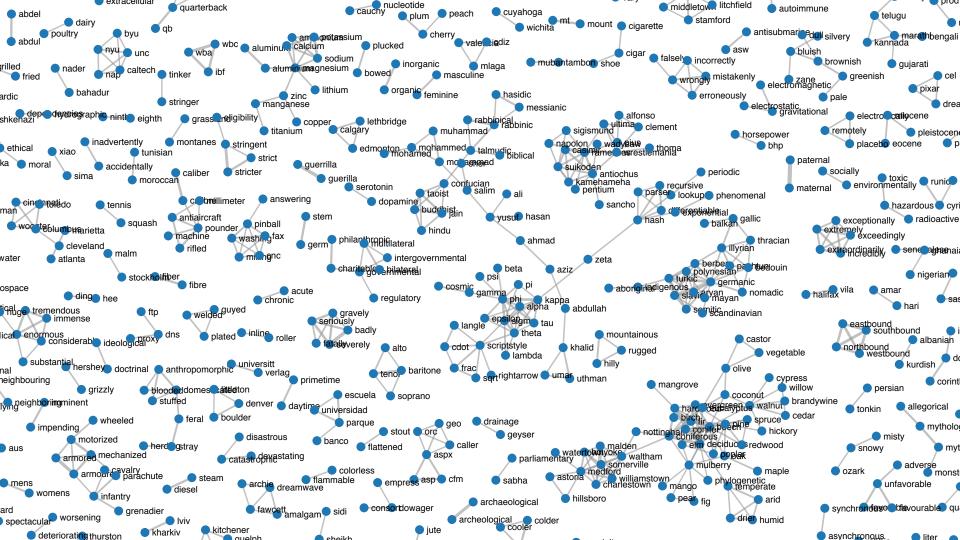
"More data trumps better algorithms"*

EXAMPLE: POPULATION SCALE GENOMICS



EXAMPLE: POPULATION SCALE GENOMICS





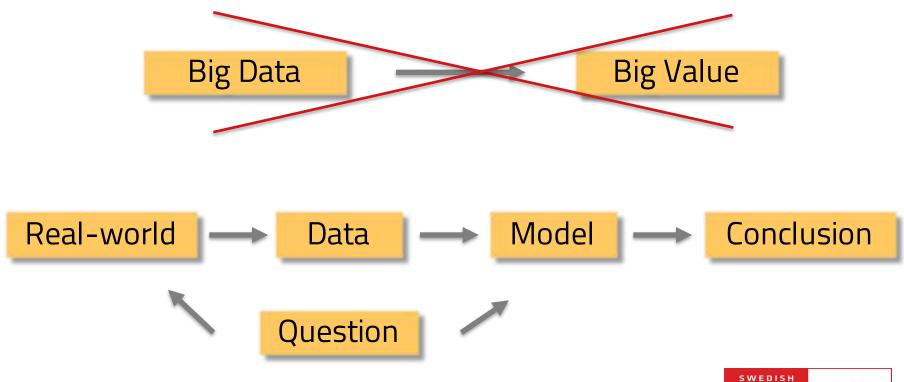
BIG DATA – A BIG MISTAKE?

- "Four oversimplified articles of faith:"
 - 1. Data analysis produces uncannily accurate results
 - Every single data point can be captured, making old statistical sampling techniques obsolete
 - 3. It is passé to fret about what causes what, because statistical correlation tells us what we need to know
 - 4. "The End of Theory": With enough data, the numbers speak for themselves
- Practitioners do not necessarily believe this, and neither should you

BIG DATA TO BIG VALUE?

Big Data Big Value

BIG DATA TO BIG VALUE?



SICS

BDA: WORKFLOW NOT FUNDAMENTALLY DIFFERENT

Acquisition Cleaning Representation Statistical Logical Case-Kernelbased based **Validation** Deployment

EVERYTHING IS ABOUT MACHINE LEARNING ANYWAY...

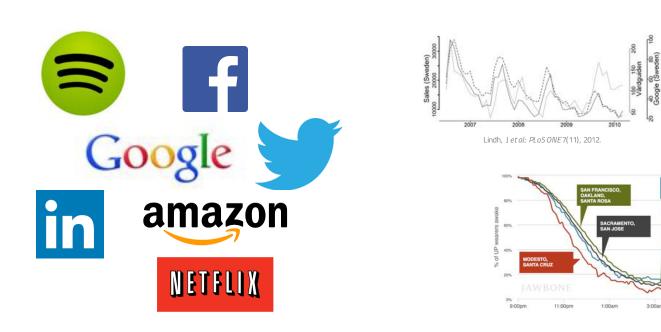
A Few Useful Things to Know About Machine Learning

Pedro Domingos

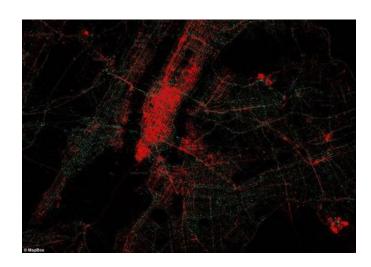
CACM 55:10

http://dl.acm.org/citation.cfm?id=2347755

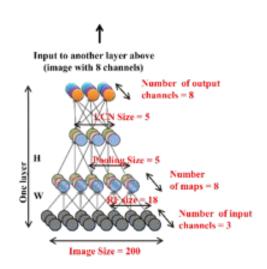
LET'S START WITH THE OBVIOUS



...BUT IT IS REALLY, REALLY DIFFICULT



Sample bias, data veracity



Model complexity

SCALABLE, PRIVACY-PRESERVING MOBILITY ANALYTICS FROM NETWORK DATA

Urban planning

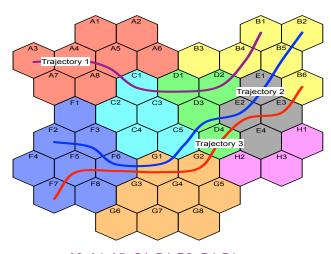
Crisis management

Traffic management

O Carland Di A. Brown B

Network management

Consumer applications



A3, A4, A5, *C1*, *D1*, D2, *B4*, B1 F2, F3, F6, *G1*, *C5*, *D3*, *E2*, E1, *B5*, B2 F7, F5, F6, *G1*, G2, *D4*, E2, E3, *B6*

AN UNSOLVABLE PROBLEM?

- Moving datasets can be difficult
 - Large and sensitive (business value, integrity issues, etc.)
 - Can allow for re-identification in anonymized data
- Combining several datasets outside their collection entity is key to many (public) applications, *but...*

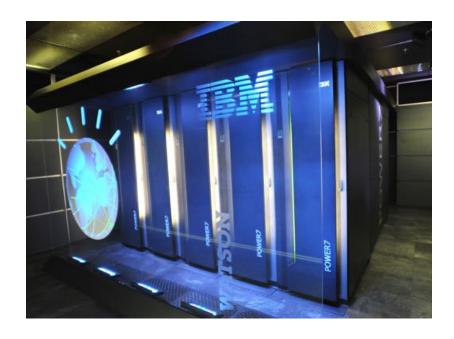
Centralized datasets: Federated datasets: Technically feasible

Technically difficult

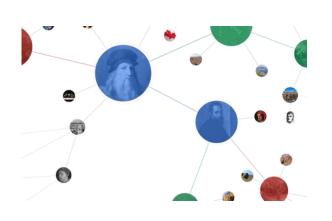
Politically hard

Politically solvable

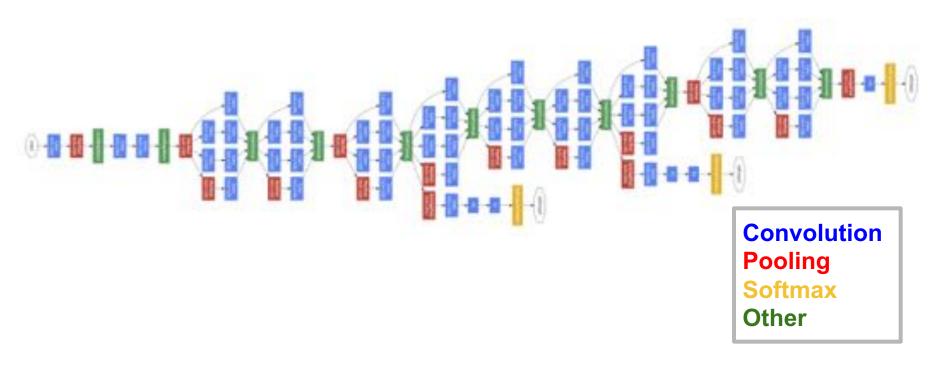
BIG DATA: KEY COMPONENT IN AUTOMATION



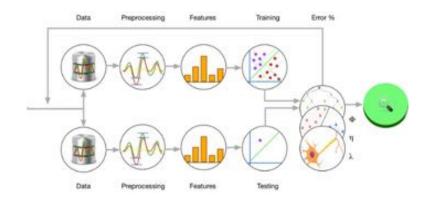
MASSIVE LEARNING SYSTEMS



LARGER AND LARGER REPRESENTATIONS



UNIFICATION OF MACHINE LEARNING?

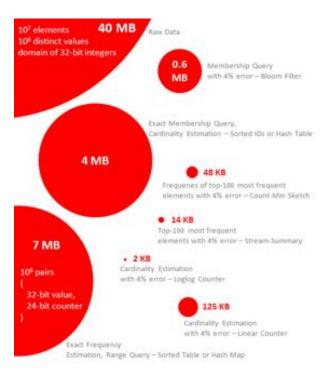


Alternating Direction Method of Multipliers

S. Boyd, N. Parikh, et al.

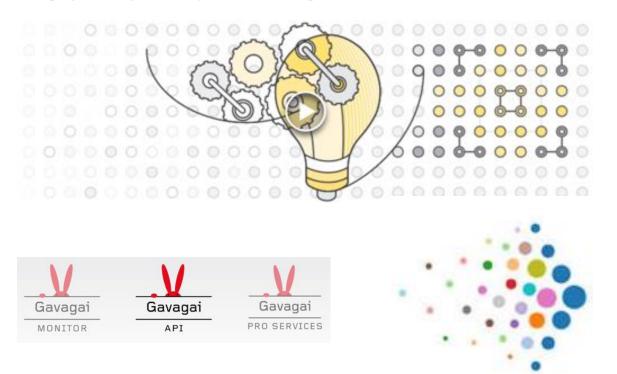
http://stanford.edu/~boyd/papers/admm_distr_stats.html

MOVING TO PROBABILISTIC APPROXIMATIONS



ANALYTICS EVERYWHERE

ANALYTICS AS A SERVICE



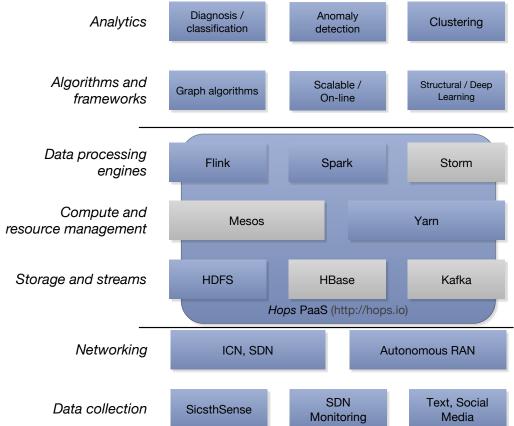
WHERE ARE WE GOING?

- Advanced analytics is moving towards large-scale Machine Learning
- 2 Computation and storage platforms need to adapt and develop

LearningMachines@SICS

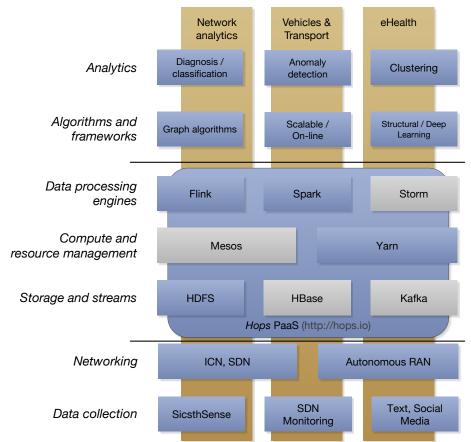
Analytics and system development on real data and use cases

THE DATA DRIVEN SYSTEMS STACK, SICS



SICS Contributions

DATA DRIVEN SYSTEMS, APPLICATION EXAMPLES

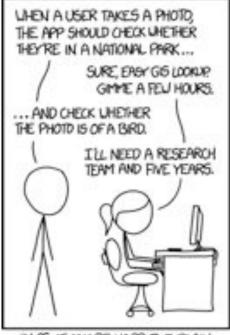


SICS Contributions

EXPERIENCE FROM APPLICATIONS

- Big Data can be *made* small consider the complete application
- Big Data can become small very quickly
- Beware of sample bias
- Distribute models, not data
- Distributed solutions, Statistical Machine Learning, and Bayesian statistics can help

DISCUSSING APPLICATIONS: IT IS NOT OBVIOUS WHAT IS DIFFICULT

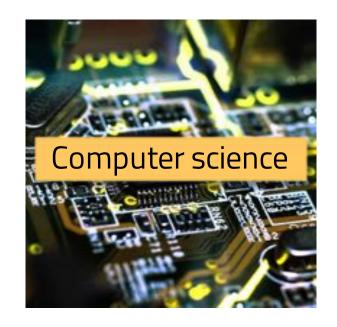


IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

WHAT ABOUT INTEGRITY?

- Not all Big Data data is integrity sensitive!
 - Media, measurements, science, ...
- How data is (or potentially is) used is everything
- Surveillance and data driven services are very different
- It all comes down to trust
 - Transparency is key
 - Laws and regulations? How do we manage sales, sharing?

THE END OF COMPUTER SCIENCE



...BUT JUST REMEMBER...

We're not there yet – things are moving fast!

WWW.SICS.SE

